Elliptic Harnack's inequality for a singular nonlinear parabolic equation in non‐divergence form

نویسندگان

چکیده

We prove an elliptic Harnack's inequality for a general form of parabolic equation that generalizes both the standard p $p$ -Laplace and normalized version has been proposed in stochastic game theory. This does not require intrinsic waiting time we get estimate with same level on sides inequality.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dirichlet Problem for Elliptic Equations in Divergence and Nondivergence Form with Singular Drift Term

is a Carleson measure in a Lipschitz domain Ω ⊂ R, n ≥ 1, (here δ (X) = dist (X, ∂Ω)). If the harmonic measure dωL0 ∈ A∞, then dωL1 ∈ A∞. This is an analog to Theorem 2.17 in [8] for divergence form operators. As an application of this, a new approximation argument and known results we obtain: Let L be an elliptic operator with coefficients A and drift term b; L can be in divergence or nondiver...

متن کامل

A Nonlinear Parabolic - Sobolev Equation

Let M and I, be (nonlinear) operators in a reflexive Banach space B for which Rg(M + L) = B and j(Mx My) i~(Lx Ly)( > / Mx My / for all 01 > 0 and pairs s, y in D(M) n D(L). Then there is a unique solution of the Cauchy problem (Mu(t))’ + Lu(t) = 0, Mu(O) = v0 . When M and L are realizations of elliptic partial differential operators in space variables, this gives existence and uniqueness of ge...

متن کامل

Hölder Estimates for Solutions of Degenerate Nondivergence Elliptic and Parabolic Equations

We deal with a class of nondivergence type elliptic and parabolic equations degenerating at the coordinate hyperplanes. Assuming that the degeneration is coordinatewise and varies regularly, we prove the Hölder continuity of solutions. Also, the approximative solutions are considered. §

متن کامل

Existence of a classical solution for linear parabolic systems of nondivergence form

We prove the unique existence of a classical solution for a linear parabolic system of nondivergence and nondiagonal form. The key ingredient is to combine the energy estimates with Schauder estimates and to obtain a uniform boundedness of a solution.

متن کامل

Attractors for the Nonlinear Elliptic Boundary Value Problems and Their Parabolic Singular Limit

We apply the dynamical approach to the study of the second order semilinear elliptic boundary value problem in a cylindrical domain with a small parameter ε at the second derivative with respect to the variable t corresponding to the axis of the cylinder. We prove that, under natural assumptions on the nonlinear interaction function f and the external forces g(t), this problem possesses the uni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of The London Mathematical Society

سال: 2022

ISSN: ['1469-2120', '0024-6093']

DOI: https://doi.org/10.1112/blms.12739